SOLUÇÃO DE PROBLEMAS DE VALOR INICIAL USANDO OS MÉTODOS DE RUNGE-KUTTA, DORMAND-PRINCE E DE BULIRSCH-STOER - Ietec

SOLUÇÃO DE PROBLEMAS DE VALOR INICIAL USANDO OS MÉTODOS DE RUNGE-KUTTA, DORMAND-PRINCE E DE BULIRSCH-STOER

Mestre
Marco Aurélio Amarante Ribeiro

Vários problemas encontrados nas ciências e, particularmente, em engenharia, podem ser resolvidos pela modelagem matemática que resulta, na maior parte, em equações diferenciais. Equações diferenciais ordinárias são subconjunto desse universo, que constituem a formulação de problemas de valor inicial de uma variedade de processos e sistemas. A solução desses problemas pode ser obtida pela solução das equações diferenciais que descrevem a dinâmica do sistema. Uma das ferramentas fundamentais para obter essas soluções são os métodos numéricos, vários deles já incorporados a alguma plataforma computacional, como, por exemplo, o Matlab. Nesta dissertação, o objetivo foi utilizar os métodos de Runge-Kutta de passo fixo e o método de Bulirsch-Stoer, para resolver três problemas típicos envolvendo equações diferenciais ordinárias e comparar conjuntamente os resultados com o método de Dormand-Prince, incorporado ao Matlab pela sub-rotina ode45. Para os métodos de Runge-Kutta e de Bulirsch-Stoer foram escritas duas sub-rotinas em linguagem do Matlab. Foram resolvidos três problemas: 1) uma equação diferencial ordinária simples com solução analítica, usada como referência; 2) modelagem de um sistema de suspensão de um veículo; e 3) a equação de Page. Para o problema 1, todos os métodos forneceram solução adequada com tamanho do passo de integração apropriado. Para o problema 2, o método de Dormand-Prince foi inflexível em manter a solução estável mesmo para tamanhos do passo maior. Os métodos de Runge-Kutta e Bulirsch-Stoer, neste caso, funcionaram bem para passos reduzidos. No problema 3, o método que forneceu uma solução estável adequada foi Bulirsch-Stoer. Os outros também funcionam, para tamanhos de passo muito reduzidos. Portanto, concluiu-se que o método adequado para solução de problemas de valor inicial depende da natureza do problema e da escolha adequada do tamanho do passo de integração.

Data: 13/05/2021

Banca avaliadora: Prof. Dr. Eder Marinho Martins; Profa. Dra. Wanyr Romero Ferreira; Prof. Dr. José Helvécio ;

PHP Code Snippets Powered By : XYZScripts.com